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The branch-flow model




Recall - The nodal LF model n

Let consider a grid composed by s nodes. The classical load flow
model relies on the following set of nodal equations:

[I] = [Y][V] Kirchoff's laws (KVL and KCL) applied to the whole grid;

S_' = V I Nodal power injectionVvj =1, ..., s
z S. = Power balance over the whole grid.

Recall the load flow equations in polar coordinates

~

i=1,2,....gtu, for the g generator

])i = El‘/z‘/er oS (ﬁz - ﬁé - yl’é) bu;e.s“+ u load buses
(=

Ql. = E‘{‘/ZYM Sin (ﬁl — 79; — )/ie) i=g+1,....g+u for the load buses
(=1




Recall - The nodal LF model n

Let consider a grid composed by s nodes. The classical load flow
model relies on the following set of nodal equations:

[I] = [Y][V] Kirchoff's laws (KVL and KCL) applied to the whole grid;

5_’ = V I Nodal power injectionVvj =1, ..., s
Z S. = Power balance over the whole grid.
Type of bus Independent variable (2s) | Dependent variable (2s)
Generator buses P V]| Q arg(V)
Load buses P Q |V| arg(V)

Slack bus V| arg(V) P Q



The branch flow model n

Let consider a generic branch between nodes i and ; of the network
modelled by a generic II-equivalent model

7 _ Vi _
Z Ski 4>| §L_j Zij —>Z Sjk
k > k
’_I — _Zij r
Si

Y, s
J Sj

=S
~

v, V complex nodal voltages respectively at nodes i and

S, § complex apparent power injections respectively at nodes i and

§ complex power flow from node i to node

7 complex current flow through the branch impedance ZU

7 17 complex shunt admittances respectively at nodes i and j

Z,j . complex apparent power entering into node i from the rest of the grid
Dk §]k complex apparent power leaving node j towards the rest of the grid



The branch flow model

For the generic branch in the figure, let now write the Kirchoff's
voltage law and the power balances.

_ Vi _ j _
k SkiA—l S Zij —>zk:51k

’—I —

O, = [, I

Si Yi Y] Sj
Vi=V; =2yl Kirchoff's voltage law on the branch
2 Sti +5i= Sij Power balance at node i
k
e 2 ——2 ——2 _
Sij = Zij |Iy;| —Yi|Vi| —Y;|V;| +5; = ESJ-R Power balance over the branch i

k

Observation: by fixing the nodal injections and/or nodal voltages, the set of all
grid branches’ equations results in a different, but equivalent, load flow model.



The branch flow model cont’'d n

The previous set of equations contains quadratic terms of nodal
voltages V#,V/* and currents [7, . However, it can be further simplified

to obtain a set of constraints ’rho’r is largely used in the context of the
optimal power flow problem.

Let’s infroduce two new variables composed by the squares of
magnitudes of nodal voltages and currents:
— 2 — 2
v = |Vi| v = |V}
2

tzij = Mz

With these new variables, we can rewrite the power balance equation
over the branch jj as a linear equation over the new variables:

2 - — .2 - 2 . —
vi[vil” = v,[vjl +Sj=25ﬂ<

Eij ZlJlZl]_Y YU]+S] ZSJR

I

Zij




The branch flow model cont’d n

We can also rewrite the Kirchoff's voltage law on the branch

Let’s multiply both sides of the last equation by their complex
conjugate, we get:

ViV = (Vi - 7ij7zij) (Ki - Zij!zij)

In view of the newly infroduced variables, we can rewrite the |last
equation as:

— 2 _ _
vj=Ui+|Zij| lZij_ViZij!Zij_ZiZijI ,



The branch flow model cont’d m

It is worth noting that V; iZijlz;; and VZU ;are complex conjugate of

the same term. Therefore, their sum can be written as 2R (ZUVL[Z ) and
the term Villi,- can be written in terms of powers as

— — —_ = (2
Vil,, =S = Y|V
ij
Therefore, we can rewrite the Kirchoff's voltage law on the branch as
— .2 _ —
Uj = V; +|Zl]| lZ — 29%[211(511 — Yl-vi)]
vj = v +(RE + X)) iz, —2R[Zi;(Sij — Yivi)]

where R;; and X;; are the branch resistance and reactance.

It is interesting to note that this equation is linear with respect to the
newly infroduced variables v;, v; and iz



The branch flow model cont'd

Therefore, we have

Sij = Zijiz;, — Yivi — Yjvj +5; = zsjk

Vi = vi+|Zij| lzi,- — [_ij(Sij - Yivi)]

ngi +5; = Sy
k

where
_ 2 2
Vi = |Vi| yUj = | J|
_ 2
bzij = 1z i _

=
<




The branch flow model cont’'d n

It is worth noting that, in the previous set of equations, we may want to
express the current iz, in terms of voltages and powers. Therefore, we

have that

— 2
[Sij — Yivil
Zij - vi
This last equation may complete the branch flow model to have all
expressed in terms of voltages and powers.

W Vi
ZSRiA’l Sy Zij —>Z Sjk
k

K
’_| TZij r

S; Y Yj §j




The branch flow model cont’d m

In summary, the branch flow model of the load flow equations is given
buy the following set of equation:s:

Sij — Zijizij — Yl-vl- — ?]U] +§] = zgjk
k
— 2_ — —
zgki +51= Sy
k

— 2
|Sij = Yivi]

Observation: since we have infroduced the new variables

— — _ 2

v; = |Vl-|2,vj = |I/j|2 and i, = |I,;| , we have dropped the current and
voltage phases. Therefore, there is the need to recover the voltage
phases.




The branch flow model cont’'d n

To recover the phase of nodal voltages, we may use re-use the
Kirchoff's voltage law applied to the branch and its conjugate

VJ — Vi - ZUI

Zij
Vi = Vi — Zijly,

Let’'s multiply both terms of this last equation by V;:

ViV =V, (Z: - Zij!zij)

ViVy = v; — Zijvilzij

— — — = 2
By recalling that VL, =S —Y;|vi|", we have
ij
— — — = 2
ViVy = v — Zij (Sij — Y|y )
Therefore, we can derive the equation to recover the phases of nodal
voltage phasors:

_ — — =2
arg(V;) + arg(V;) = arg (vi — Zjj (Sij — Y|V ))
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The Ward — Hale approximation




The Ward - Hale approximation n

Cartesian coordinates

The Ward - Hale approximation is related to the application of the Newton-Raphson
method to the Load-Flow problem solution using Cartesian coordinates.

m According to this approximation, we consider the variations [AP] and [AQ] of the
powers injected into the network in a generic node depending only on the
voltage of that node.

m This approach is justified by the fact that the partial derivatives of the powers
injected into the node i with respect to V;" and V/" expressed by (LF.32) and (LF.33)

are, in general, sufficiently larger than V" and v/’ fori # L.

% = Gsz“ + BieVi“ r% =-B,V, +G.V,
I 26,V + 3 (G, - BV, ) alj > (B,V, +G,V,) )
L= . - + G
aVi‘ i +§§( ) aVi ii i;ll ¢ i



The Ward — Hale approximation

Cartesian coordinates

9P;
aV’ aV”
connections afferent fo the node i

ond

L contain a summation|term| tacking into consideration all the

oP; . . )
avf cmd av” L contain alterm|for the single connections between the node in
l l

examination and the other node of the grid to which the derivative refers (1).

iud = Gzevz + Bié‘/i” ra—Pl = —Bl.éVl.' + Gl.eVl.”
o (LF32) i (LF.33)
w oP s , ) ' J oy 19 ap e | ” :
GVi‘ =2G.V, +ZE(Gisz -B,V, ) avil,, =2G,V. +;(BMVK +G,V, )
) ‘ (=i

m |t is therefore possible to assume:

0P _ 0P _ 00 _ 2i _
aI/ll aVl/I aI/ll aVl/I



The Ward — Hale approximation n

Cartesian coordinates

As a direct consequence, the approximation consists in assuming the matrix [Y] of
nodal admittances to be a diagonally dominant matrix.

According to the Ward-hale approximation, the Jacobian submatrices:
ap] dP ] OQ] l aQ
av’ av" av’ av"

become purely diagonal, as they present non-zero elements only on the diagonal.
Since the matrices:

a(V?)
v’

aVII

[a(vz)

are diagonal as well , it turns out that all six Jacobian sub-matrices are diagonal,
resulting in a decoupling of the iteration process.




The Ward — Hale approximation n

Cartesian coordinates
With the Ward-Hale approximation, the equation (LF.27) for load buses becomes:

(LF.27)

[ : 1™ ( ap™) 9 P(V)
oP | oP () i r(v+1) n(v+1)
_ v+ v AP. = ——AV: AV
woae | Jae 1 Jae]T ) T Tt Ty
90 | 90 AV" AQ aQ() aQ(v)
— | — v) r(v+1) 1m(v+1)
1o " AQ. = AV AV
| OVI VT | A v r7a ovy’
While for the generator buses (LF.36):
o (F3) ( ™) )
i 0P, , 0P, .
E ﬁ (v+1) ) AP(V) = —,AV- (v+1) + = AV v+1)
v _ave | A || AP v, oV
aV? i gV? AV" AV? = ) ( _2)(V) a1 ( _2)(V) va1)
B av av i \ ( l) aVi’ l + aVi” l

Both systems have 2 equations with the 2 unknown AV and AV}”. Passing to the next
node (i + 1) in the same iteration, it is possible to use the updated value of voltage

v/, V" in the computation of:
o 20, 20

aP;
oV,
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The Carpentier approximation




Recall n

Electrically short lines

Let us consider a very short line, that is, a line in which the fransverse admittance can
be neglected:

1 . 2
o— | X }——0
P = P, = 2sing )
‘71]\ T E>
A - o o
Q1 = X (V1 —V, cos0) 7

Q2 = BTVZGG cos —V5) %» v,

= The active power depends on the angle difference between V; and V,.

m Being 6 a generally very small angle, it can be affirmed that cos ~ 1 and therefore
the reactive power depends mainly on the modules of the voltages.



The Carpentier approximation m

Polar coordinates

The Carpentier method consists in supposing that the active powers injected into the
nodes depend only on the phases of the voltages and that the reactive powers
depend only on the modules of the voltages (i.e. active-reactive decoupling).

m Decoupling between the active power variables (i.e. voltage phases) and reactive
powers (i.e. voltage modules).

m The elements of the sub-matrix [ae] are, for high voltage transmission systems,

normally much larger than those of the sub-matrix [a ] Note that this is not true in
distribution systems.

m The elements of the sub-matrix [g—g] are, for high voltage transmission systems,

normally much larger than those of the sub-matrix [g—g]. Note that this is not true in
distribution systems.

m Therefore:

P>laP ap]
ol ”lavl = larl”®

e R



The Carpentier approximation m

Polar coordinates

m The approximation of Carpentier consists in supposing null the matrices [2—5] and

[Z—BQ] for which the system (LF.42) becomes:
o iop | Ap)

- — v+ v) O -

oV 90 av 17T ap 3 AV D) Ap )
LoV L0V | AYL _| 2L (LF.42) = 130

90 90 | | AV AQ 2

VvV | 09 oV

m Therefore, in two independent equations:

0P )
=5l [A0]V+D = [AP]™)
001
22 x avies = ag)®

Full uncoupling between active and reactive components.
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The Stoft Approximation m

Load flow in polar coordinates

Starting from the polar coordinate formulation of Load Flow (slide 14 Lecture 2.3):
S S S
S=P+jQi=VLi=T ) YuVi= ) Vi YaVi= ) V;V¥ye @0y
=1 =1 =1

By imposing:
V. =Vel% =V;[cos6;+ jsinb;]
v, = Ve 1% =V[cos(=6)) + jsin(—6))]
Yu=0Gy—JBy

Vi(Gyy — jBa)lcos(8r) + j sin(6;)]

S
=1

s
Si=V; Z Vi(Gy — jBy)lcos(6; — 6,) + jsin(6; — 6,)] = V;
=1 ]



The Stoft Approximation

Polar coordinates

From which (same as slide 18 Lecture 2.3 ).

( S

P; =V Z %4 (Gil CcoS Qil + Bj; sin gil)
=1

< S

Q; =V z V1(Gy; sin 6;; — By cos 6;;)
=1

\

extracting from the sum the term relative to the node i

( S

P; = +GiiVi2 +V; Z V (Gih cos 0;; + B;; sin 9”)

=1
l#i
\ S

Q; = —BuVZ +V; Z Vi(Gy sin 6 — By cos 6;;)

=1
\ l#i




The Stotft Approximation

Polar coordinates

By calculating the derivatives:

P, |
— = -V Z V,(Gj; sin 6;; — Bj; cos 6;;)
d0; .
l#i
00Q; :
FTG = _ZBiiVi + Vl(Gil s Gil - Bil Cos 9”)
i

[#i
Hypothesis:

1. By cos8; = B; since the angle differences 6;; are small, i.e. cos 6;; = 1
2. Gy sin0; < Bj; since the values of G;; are extremely small
3. Q; < BV



The Stoft Approximation

Polar coordinates

As O consequence:

(9P,
% = —ViViBip, p.
P [ # i = L= —vyB; VI
P V2R 00,
90, Vi b
\ l
(00Q;
= —V.B:
av. 1Pil 00:
4 ! l#1i = Ql = _ViBil Vi
0Q; B av,
= —Vibijj
4
As a consequence, the equation for the LF:
( S ) ( S
dp, +1 APWY) +1 +1
AR =) i — a6{"*" = > (=B L One
=1 =1
=| <
< S aQ(V) AQ(V) 5}
AQi(v) _ z a]l/ AVl(v+1) = Z(—Bu )AVZ(VH)
L =1 ! L =1

Jacobian matrices have become (constant) B matrices.
Therefore, the NR method does not require any iteration.



Ward-Hale Carpentier Stott
Coordinates: Coordinates: Coordinates:
Cartesian Polar Polar + Cartesian (mixed)

Hypothesis:
P is only function of 8 and Q

is function of IV

Hypothesis:
P is only function of 8 and Q
o)

fv

Hypothesis:

[AP] and [AQ] in a generic
node are depending only
on the voltage of that node

oP 2Q
=0 [~
dp; dP; [P
6Vl’ aVl” 0 i+l 37 0 i1 €COS Uy il
00; 90, _ 007 _ . Gy sin0;; < By
ov; v 0 1%l .00 | Qi < ByVy’
Result: Result: Result:
Decoupling between nodes + Decoupling of P and @ » Decoupling of P and Q

No iterations
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The DC Approximation

= For high voltage systems, the longitudinal resistances of the line conductors and
copper losses of tfransformers are neglected with respect to the series reactance of
the lines and transformers (note that this is not frue in distribution systems).

o Acceptable when the calculation of losses is waived.

o ; ~ 10 for transmission lines,

o f ~ 50 for transformers

o In both cases z = jx
= The transverse admittances of the network components are neglected.

o The shunt capacitances of the lines generate reactive power especially in long
lines at very high voltage;

o The currents flowing through the shunt capacitances are mainly associated to
the reactive power balance of the line and, in high voltage systems, they are
related to the difference of voltages magnitudes at the extremes of the lines.

o In high voltage systems, however, shunt capacitances have a little influence on
the active power flows that mainly depend on the differences between the
phases of the voltage phasors at the line end:s.

o The shunt conductance, which take into account the corona and insulators
losses of the lines and the iron-losses transformers, may assumed small and, in the
DC approximation, negligible.

With these simplifications, the grid model is only composed by longitudinal inductive
reactances (i.e., the equivalent series reactance of lines and fransformers).



The DC Approximation

= V;,V, are the voltages phasors at the extremities
= g, is the argument of V; and 6, the argument of V;, 8;; = 8; — 6,
= x;; the reactance of the branch il

In view of the above, the active power through the branch il is:
3V;V;

P = o ——sin 6;;
Further hypotheses of the DC approximation are the following:
= the modules of the nodal voltages all equal to 1 pu
= the difference 0; — 6, is small, therefore sin(8; — 0;) = 6; — 9,

Therefore, we have

P = 19
ll_xil il

As a consequence, the injection of power in o genericol nodeiis:

P; = zpl
l xll xlS

l+#i

(note that the voltage angles are known up to one phase shift, so we need to take
one node, say k, as reference and set 6, = 0 o’r this node sO we have that:

P—<1+ 1)9 Z 9, = ZBH
' Xi1 Xis xlll ot

l:tl



The DC Approximation

The following linear matrix equation is obtained for the whole network:

[P] = [B]x[6]

where [B] and the "susceptance matrix” of the entire transmission network (in pu).

As seen before, the diagonal terms B;; of [B] consist of the sum of the (longitudinal)
susceptance of all sides converging at the i-th node

The terms on the diagonal B;; are positive if the susceptance are inductive while the
other terms are all negative, provided that the susceptance are inductive, and meet
condition

By = By
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The linearized load-flow model

State-dependent computation of voltage sensitivity
coefficients with respect to power injections.

Let consider a generic 3-phase (a,b,c) network with s buses

> N:set of PQ buses
> H:set of slack buses

{1,2,...,s}=H UN, HNnN =0

= Use of compound [Y ;] matrix :
» Unbalanced configuration
» Coupling between phases
> Highly-sparse

= STEP 1:
= Nodal equations linking bus voltages to current injections:

> 3xs equations [Tabc] = [Yabel * [Vabel




The linearized load-flow model

Efficient Computation of Voltage Sensitivity Coefficients

= STEP 2:
= The i-th element of the equations can be expressed:

= STEP 3:
= Elimination of currents:
> Link between PQ injections and bus voltages

Si=V; 2 Y;;V; (€N

JEHUN
Sensitivities w.r.t. power injections Sensitivities w.r.t. OLTC
» Partial derivatives w.r.t. » Partial derivatives w.r.1.
PQ injections slack bus voltage
ol oVl A

€
or, 00,0 &V 37,

k e H



The linearized load-flow model

Voltage Sensitivities with respect to power injections
= STEP 4:

= Partial derivatives w.r.t. PQ injections

S = aSs; %, _
Si=V; Z Vi Vi o) a—l =~ {Ki Z i V]}
JEHUN Py Py

= Assumptions:

7
> Fixed slack bus voltage —P] =0, Vi eEH
l
20 _ _ dS a{Pl ]Ql} .
or, 0P Lyg=p and 0Q;  0Q =
= Sparse linear system in rectangular coordinates:

aV; aV;

1oy = — _J

1 =gp 2, TtV iy
Liemon

v,
“i=n =735 Z Z
JEHUN eN

SII
2

\W
©|\<|




The linearized load-flow model

Voltage Sensitivities with respect to power injections
= STEP 5:

= Separate in real and imaginary parts

. OV ins Vi OV ing,, OV
= Solve the linear system for —REAL _—IMAG qpng ——REAL _—IMAG

0P 0P, dQ; 9Q;
ov; O0V; oV ov; O0V; oV
- R n .l.r .l. =l _ REAL : — —'IMAG =l _ _— REAL . ~ —'IMAG
econsiruc op, 2P, + o, and 50, 20; +j 30,

= Sensitivity Coefficients Kp :




The linearized load-flow model

Theorem:

The system of equations (*), which is linear with respect to rectangular
coordinates, has a unique solution for every radial electrical network and for
any operating point where the load-flow Jacobian is invertible.

= Proof:

The system is linear in rectangular coordinates and has as many equations as
unknowns. The theorem is equivalent to showing that the homogeneous
system of equations has only the ftrivial solution. The homogeneous system can

be written as:
0 = A Z Y, I7] +V Z VieN
jEHUN jen

Where A; are the unknown complex numbers. We want to show that they are
equal to zero for all i € V. Let’s consider two networks with the same topology

(i.,e. same [Y,,.] matrix), where the voltages are given. In the first network the
voltages are:

_i, = Vi Vl € 7’[
V=V, + 4 ViEeN

In the second the voltages are:
VieH

e
I
ST

~
~

I

VieN

o~



The linearized load-flow model m

= Proof (ctd):
Let S; be the conjugate of the absorbed/injected power at the i-th bus in the
first network and S5 in the second. Thus, we have the following equations.

Network 1:
Si=V} Z v = +4) ZYLJVJ‘*' v (V; +4)
JEHUN JEH JEN
=V YLJVJ‘l'éL YL]E]-I_AL Z Z]V]‘l'zl YLJZ]
JERUN JEN JERUN JEN
Network 2:
Si=V; z Vi Vi +4; ) Vb — A Z Yij_j_zizyij A;
JERUN JEN JERUN JEN

Subtracting the two we get:

§'i—£'i'=2<éi Z ViiVi+V,; ) Y Z,-)



The linearized load-flow model n

= Proof (ctd):

If we suppose that the load-flow Jacobian matrix is invertible, we can
apply the inverse function theorem. As a consequence, the nonlinear
system of the power flow equations is locally invertible in a
neighbourhood around the current operating point. Now, we take
arbitrarily small, such that V; = V;’ belong to this neighbourhood
where there is a one-to-one mapping between the powers and
voltages. As the powers that correspond to V; = V;" are exactly the
same, it follows that S, = S for every bus i € N. Thus, the two networks
have the same active and reactive power at all non-slack busses and
the same voltages at all slack busses. Therefore, it follows that the
voltage profiles of these networks must be exactly the same, i.e.:

Vi_Aiz i+Zi

-

Zi=



