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Recall – The nodal LF model

𝐈̅ = $𝐘 &𝐕 Kirchoff’s laws (KVL and KCL) applied to the whole grid;

&𝑆! = 𝑉!𝐼! Nodal power injection ∀𝑗 = 1,… , 𝑠;

+
!"#

$

&𝑆! = 0 Power balance over the whole grid.

i=1,2,...,g+u, for the g generator 
buses + u load buses

i=g+1,...,g+u for the load buses

Recall the load flow equations in polar coordinates

Pi = ViVlYil cos ϑ i −ϑ l −γ il( )
l=1

s

∑

Qi = ViVlYil sin ϑ i −ϑ l −γ il( )
l=1

s

∑

⎧

⎨
⎪⎪

⎩
⎪
⎪

4

Let consider a grid composed by s nodes. The classical load flow 
model relies on the following set of nodal equations:
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Let consider a grid composed by s nodes. The classical load flow 
model relies on the following set of nodal equations:

𝐈̅ = $𝐘 &𝐕 Kirchoff’s laws (KVL and KCL) applied to the whole grid;

&𝑆! = 𝑉!𝐼! Nodal power injection ∀𝑗 = 1,… , 𝑠;

+
!"#

$

&𝑆! = 0 Power balance over the whole grid.

Type of bus Independent variable (2s) Dependent variable (2s)

Generator buses 𝑃 𝑉 𝑄 𝑎𝑟𝑔 𝑉

Load buses 𝑃 𝑄 𝑉 𝑎𝑟𝑔 𝑉

Slack bus 𝑉 𝑎𝑟𝑔 𝑉 𝑃 𝑄
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The branch flow model
Let consider a generic branch between nodes i and j of the network 
modelled by a generic 𝚷-equivalent model

6

𝑍!"

𝑌! 𝑌"

𝑉! 𝑉"
𝑆!"

𝑠!

𝑉! , 𝑉" : complex nodal voltages respectively at nodes i and j
𝑠!, 𝑠" : complex apparent power injections respectively at nodes i and j
𝑆!": complex power flow from node i to node j
𝐼#!": complex current flow through the branch impedance 𝑍!"
𝑌! , 𝑌" : complex shunt admittances respectively at nodes i and j
∑$ 𝑆$! : complex apparent power entering into node i from the rest of the grid
∑$ 𝑆"$ : complex apparent power leaving node j towards the rest of the grid

𝐼#!"
𝑠"

2
$

𝑆$! 2
$

𝑆"$



The branch flow model
For the generic branch in the figure, let now write the Kirchoff’s 
voltage law and the power balances.
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𝑉! − 𝑉" = 𝑍!"𝐼#!"

2
$

𝑆$! +𝑠!= 𝑆!"

𝑆!" − 𝑍!" 𝐼#!"
%
− 𝑌! 𝑉!

%
− 𝑌" 𝑉"

%
+ 𝑠" =2

$

𝑆"$

Kirchoff’s voltage law on the branch

Power balance at node i

Power balance over the branch ij

Observation: by fixing the nodal injections and/or nodal voltages, the set of all 
grid branches’ equations results in a different, but equivalent, load flow model.

𝑍!"

𝑌! 𝑌"

𝑉! 𝑉"
𝑆!"

𝑠!
𝐼#!"

𝑠"

2
$

𝑆$! 2
$

𝑆"$



The branch flow model cont’d
The previous set of equations contains quadratic terms of nodal 
voltages 𝑉!", 𝑉#" and currents 𝐼$!"

" . However, it can be further simplified 
to obtain a set of constraints that is largely used in the context of the 
optimal power flow problem.
Let’s introduce two new variables composed by the squares of 
magnitudes of nodal voltages and currents:

𝑣! = 𝑉!
"
, 𝑣# = 𝑉#

"

𝑖$!" = 𝐼$!"
"

With these new variables, we can rewrite the power balance equation 
over the branch ij as a linear equation over the new variables:

𝑆!# − 𝑍!# 𝐼$!"
"
− 𝑌! 𝑉!

"
− 𝑌# 𝑉#

"
+ 𝑠# =2

%

𝑆#%

𝑆!# − 𝑍!#𝑖$!" − 𝑌!𝑣! − 𝑌#𝑣# + 𝑠# =2
%

𝑆#%
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The branch flow model cont’d
We can also rewrite the Kirchoff’s voltage law on the branch

𝑉! − 𝑉# = 𝑍!#𝐼$!"
𝑉# = 𝑉! − 𝑍!#𝐼$!"

Let’s multiply both sides of the last equation by their complex 
conjugate, we get:

𝑉#𝑉# = 𝑉! − 𝑍!#𝐼$!" 𝑉! − 𝑍!#𝐼$!"
𝑉#𝑉# = 𝑉!𝑉!+ 𝑍!#𝑍!#𝐼$!"𝐼$!" − 𝑉!𝑍!#𝐼$!" − 𝑉!𝑍!#𝐼$!"

In view of the newly introduced variables, we can rewrite the last 
equation as:

𝑣# = 𝑣! + 𝑍!#
"
𝑖$!" − 𝑉!𝑍!#𝐼$!" − 𝑉!𝑍!#𝐼$!"
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The branch flow model cont’d
It is worth noting that  𝑉!𝑍!#𝐼$!" and  𝑉!𝑍!#𝐼$!" are complex conjugate of 
the same term. Therefore, their sum can be written as 2ℜ 𝑍!#𝑉!𝐼$!"  and 
the term 𝑉!𝐼$!" can be written in terms of powers as 

𝑉!𝐼$!" = 𝑆
!#
− 𝑌! 𝑉!

"

Therefore, we can rewrite the Kirchoff’s voltage law on the branch as

𝑣# = 𝑣! + 𝑍!#
"
𝑖$!" − 2ℜ 𝑍!# 𝑆!# − 𝑌!𝑣!

𝑣# = 𝑣! + 𝑅!#" + 𝑋!#" 𝑖$!" −2ℜ 𝑍!# 𝑆!# − 𝑌!𝑣!

where 𝑅!# and 𝑋!# are the branch resistance and reactance.

It is interesting to note that this equation is linear with respect to the 
newly introduced variables 𝑣#, 𝑣! and 𝑖$!".
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The branch flow model cont’d
Therefore, we have

𝑆!# − 𝑍!#𝑖$!" − 𝑌!𝑣! − 𝑌#𝑣# + 𝑠# =2
%

𝑆#%

𝑣# = 𝑣!+ 𝑍!#
"
𝑖$!" − 2ℜ 𝑍!# 𝑆!# − 𝑌!𝑣!

2
%

𝑆%! + 𝑠! = 𝑆!#

where

𝑣! = 𝑉!
"
, 𝑣# = 𝑉#

"

𝑖$!" = 𝐼$!"
"
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𝑍!"

𝑌! 𝑌"

𝑉! 𝑉"
𝑆!"

𝑠!
𝐼#!"

𝑠"

2
$

𝑆$! 2
$

𝑆"$



The branch flow model cont’d
It is worth noting that, in the previous set of equations, we may want to 
express the current 𝑖$!" in terms of voltages and powers. Therefore, we 
have that

𝑖$!" =
𝑆!# − 𝑌!𝑣!

"

𝑣!
This last equation may complete the branch flow model to have all 
expressed in terms of voltages and powers.
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𝑍!"

𝑌! 𝑌"

𝑉! 𝑉"
𝑆!"

𝑠!
𝐼#!"

𝑠"

2
$

𝑆$! 2
$

𝑆"$



The branch flow model cont’d
In summary, the branch flow model of the load flow equations is given 
buy the following set of equations:

𝑆!# − 𝑍!#𝑖$!" − 𝑌!𝑣! − 𝑌#𝑣# + 𝑠# =2
%

𝑆#%

𝑣# = 𝑣!+ 𝑍!#
"
𝑖$!" − 2ℜ 𝑍!# 𝑆!# − 𝑌!𝑣!

2
%

𝑆%! +𝑠!= 𝑆!#

𝑖$!" =
𝑆!# − 𝑌!𝑣!

"

𝑣!

Observation: since we have introduced the new variables

𝑣! = 𝑉!
"
, 𝑣# = 𝑉#

"
 and 𝑖$!" = 𝐼$!"

"
 , we have dropped the current and 

voltage phases. Therefore, there is the need to recover the voltage 
phases.
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The branch flow model cont’d
To recover the phase of nodal voltages, we may use re-use the 
Kirchoff’s voltage law applied to the branch and its conjugate

𝑉# = 𝑉! − 𝑍!#𝐼$!"
𝑉# = 𝑉! − 𝑍!#𝐼$!"

Let’s multiply both terms of this last equation by 𝑉!:

𝑉!𝑉# = 𝑉! 𝑉! − 𝑍!#𝐼$!"
𝑉!𝑉# = 𝑣! − 𝑍!#𝑉!𝐼$!"

By recalling that 𝑉!𝐼$!" = 𝑆
!#
− 𝑌! 𝑉!

"
, we have

𝑉!𝑉# = 𝑣! − 𝑍!# 𝑆!# − 𝑌! 𝑉!
"

Therefore, we can derive the equation to recover the phases of nodal 
voltage phasors:

𝑎𝑟𝑔 𝑉! + 𝑎𝑟𝑔 𝑉# = 𝑎𝑟𝑔 𝑣! − 𝑍!# 𝑆!# − 𝑌! 𝑉!
"
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The Ward – Hale approximation 16

The Ward - Hale approximation is related to the application of the Newton-Raphson 
method to the Load-Flow problem solution using Cartesian coordinates. 

¡ According to this approximation, we consider the variations 𝜟𝑷  and 𝚫𝑸  of the 
powers injected into the network in a generic node depending only on the 
voltage of that node. 

¡ This approach is justified by the fact that the partial derivatives of the powers 
injected into the node 𝑖 with respect to 𝑉#′ and 𝑉#$$ expressed by (LF.32) and (LF.33) 
are, in general, sufficiently larger than 𝑉%′ and 𝑉%$$ for 𝑖 ≠ 𝑙. 

Cartesian coordinates

JPR :

∂Pi
∂Vl

' =GilVi
' +BilVi

''

∂Pi
∂Vi

' = 2GiiVi
' + GilVl

' −BilVl
''( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.32( ) JPX :

∂Pi
∂Vl

'' = −BilVi
' +GilVi

''

∂Pi
∂Vi

'' = 2GiiVi
'' + BilVl

' +GilVl
''( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.33( )



¡
&'!
&(!

" and &'!&(!
"" contain a summation term, tacking into consideration all the 

connections afferent to the node 𝑖

¡
&'!
&(#

"  and &'!
&(#

"" contain a term for the single connections between the node in 

examination and the other node of the grid to which the derivative refers (𝑙).

¡ It is therefore possible to assume:

67!
68"

# =
67!
68"

## ≈ 0         69!
68"

# =
69!
68"

## ≈ 0

The Ward – Hale approximation 17
Cartesian coordinates

JPR :

∂Pi
∂Vl

' =GilVi
' +BilVi

''

∂Pi
∂Vi

' = 2GiiVi
' + GilVl

' −BilVl
''( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.32( ) JPX :

∂Pi
∂Vl

'' = −BilVi
' +GilVi

''

∂Pi
∂Vi

'' = 2GiiVi
'' + BilVl

' +GilVl
''( )

l=1
l≠i

s

∑

⎧

⎨

⎪
⎪

⎩

⎪
⎪

LF.33( )



The Ward – Hale approximation 18

As a direct consequence, the approximation consists in assuming the  matrix [𝑌] of 
nodal admittances to be a diagonally dominant matrix.

According to the Ward-hale approximation, the Jacobian submatrices: 
𝜕𝑃
𝜕𝑉$

𝜕𝑃
𝜕𝑉$$

𝜕𝑄
𝜕𝑉$

𝜕𝑄
𝜕𝑉$$

become purely diagonal, as they present non-zero elements only on the diagonal. 
Since the matrices:

𝜕 𝑉)

𝜕𝑉$
𝜕 𝑉)

𝜕𝑉$$

are diagonal as well , it turns out that all six Jacobian sub-matrices are diagonal, 
resulting in a decoupling of the iteration process.

Cartesian coordinates



The Ward – Hale approximation 19

With the Ward-Hale approximation, the equation (LF.27) for load buses becomes:

⟹
Δ𝑃#

(+) =
𝜕𝑃#

+

𝜕𝑉#$
Δ𝑉#

$ +-. +
𝜕𝑃#

+

𝜕𝑉#$$
Δ𝑉#

$$ +-.

Δ𝑄#
(+) =

𝜕𝑄#
+

𝜕𝑉#$
Δ𝑉#

$ +-. +
𝜕𝑄#

+

𝜕𝑉#$$
Δ𝑉#

$$ +-.

While for the generator buses (LF.36):

⟹
Δ𝑃#

(+) =
𝜕𝑃#

+

𝜕𝑉#$
Δ𝑉#

$ +-. +
𝜕𝑃#

+

𝜕𝑉#$$
Δ𝑉#

$$ +-.

Δ 𝑉#)
(+)

=
𝜕 𝑉#)

(+)

𝜕𝑉#$
Δ𝑉#

$ +-. +
𝜕 𝑉#)

(+)

𝜕𝑉#$$
Δ𝑉#

$$ +-.

Both systems have 2 equations with the 2 unknown Δ𝑉#$ and Δ𝑉#$$. Passing to the next 
node (𝑖 + 1) in the same iteration, it is possible to use the updated value of voltage 
𝑉#$, 𝑉#$$ in the computation of:

𝜕𝑃#
𝜕𝑉#$

𝜕𝑃#
𝜕𝑉#$$

𝜕𝑄#
𝜕𝑉#$

𝜕𝑄#
𝜕𝑉#$$

Cartesian coordinates

∂P
∂V '

∂P
∂V ''

∂Q
∂V '

∂Q
∂V ''

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

× ΔV '
ΔV ''

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

∂P
∂V '

∂P
∂V ''

∂V 2

∂V '
∂V 2

∂V ''

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

× ΔV '
ΔV ''

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔV 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

LF.36( )

LF.27( )
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Let us consider a very short line, that is, a line in which the transverse admittance can 
be neglected:

𝑃& = 𝑃" =
'(/(0
)

sin 𝜃

𝑄& =
'(/
)

𝑉& − 𝑉" cos 𝜃

𝑄" =
'(0
)

𝑉& cos 𝜃 − 𝑉"

¡ The active power depends on the angle difference between 𝑽𝟏 and 𝑽𝟐.
¡ Being 𝜃 a generally very small angle, it can be affirmed that cos 𝜃 ≈ 1 and therefore 

the reactive power depends mainly on the modules of the voltages. 

Recall 21

!𝑉$ 

Electrically short lines

!𝑉% 

!𝑉$ 



The Carpentier approximation 22

The Carpentier method consists in supposing that the active powers injected into the 
nodes depend only on the phases of the voltages and that the reactive powers 
depend only on the modules of the voltages (i.e. active-reactive decoupling).

¡ Decoupling between the active power variables (i.e. voltage phases) and reactive 
powers (i.e. voltage modules). 

¡ The elements of the sub-matrix &'
&3 are, for high voltage transmission systems, 

normally much larger than those of the sub-matrix &'
&( . Note that this is not true in 

distribution systems.
¡ The elements of the sub-matrix &4

&( are, for high voltage transmission systems, 
normally much larger than those of the sub-matrix &4

&3
. Note that this is not true in 

distribution systems.

¡ Therefore:
𝜕𝑃
𝜕𝜃 ≫

𝜕𝑃
𝜕𝑉 ⟹

𝜕𝑃
𝜕𝑉 ≈ 0

𝜕𝑄
𝜕𝑉 ≫

𝜕𝑄
𝜕𝜃 ⟹

𝜕𝑄
𝜕𝜃 ≈ 0

Polar coordinates



The Carpentier approximation 23

¡ The approximation of Carpentier consists in supposing null the matrices &'
&( and

&4
&3

for which the system (LF.42) becomes:

⟹
0

𝜕𝑃
𝜕𝜃

𝜕𝑄
𝜕𝑉

0

(+)

× Δ𝑉
Δ𝜃

(+-.)
= Δ𝑃

Δ𝑄
(+)

¡ Therefore, in two independent equations:

𝜕𝑃
𝜕𝜃

(+)
× Δ𝜃 (+-.)= Δ𝑃 (+)

𝜕𝑄
𝜕𝑉

(+)
× Δ𝑉 (+-.) = Δ𝑄 (+)

Full uncoupling between active and reactive components.

Polar coordinates

∂P
∂V

∂P
∂ϑ

∂Q
∂V

∂Q
∂ϑ

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

(ν )

× ΔV
Δϑ

⎡

⎣
⎢

⎤

⎦
⎥

(ν+1)

=
ΔP
ΔQ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

(ν )

LF.42( )
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The Stott Approximation 25

Starting from the polar coordinate formulation of Load Flow (slide 14 Lecture 2.3):

B𝑆# = 𝑃# + 𝑗𝑄# = E𝑉#𝐼 # = E𝑉#G
%5.

6

𝑌 #% 𝑉% =G
%5.

6

B𝑉# 𝑌 #% 𝑉% =G
%5.

6

𝑉# 𝑉%𝑌#%𝑒7 3!83#89!#

By imposing:

:
;𝑉! = 𝑉!𝑒"&! = 𝑉! cos 𝜃! + 𝑗 sin 𝜃!  
𝑉' = 𝑉'𝑒("&# = 𝑉' cos −𝜃' + 𝑗 sin −𝜃'
𝑌!' = 𝐺!' − 𝑗𝐵!' 

̅𝑆# = 𝑉#G
%5.

6

𝑉% 𝐺#% − 𝑗𝐵#% cos 𝜃# − 𝜃% + 𝑗 sin 𝜃# − 𝜃% = 𝑉#G
%5.

6

𝑉% 𝐺#% − 𝑗𝐵#% cos 𝜃#% + 𝑗 sin 𝜃#%

Load flow in polar coordinates



The Stott Approximation 26

From which (same as slide 18 Lecture 2.3 ):

𝑃# = 𝑉#G
%5.

6

𝑉% 𝐺#% cos 𝜃#% + 𝐵#% sin 𝜃#%

𝑄# = 𝑉#G
%5.

6

𝑉% 𝐺#% sin 𝜃#% − 𝐵#% cos 𝜃#%

extracting from the sum the term relative to the node 𝑖

𝑃# = +𝐺##𝑉#) + 𝑉#G
%5.
%:#

6

𝑉% 𝐺#; cos 𝜃#% + 𝐵#% sin 𝜃#%

𝑄# = −𝐵##𝑉#) + 𝑉#G
%5.
%:#

6

𝑉% 𝐺#% sin 𝜃#% − 𝐵#% cos 𝜃#%

Polar coordinates



The Stott Approximation 27

By calculating the derivatives:

𝜕𝑃#
𝜕𝜃#

= −𝑉#G
%:#

𝑉% 𝐺#% sin 𝜃#% − 𝐵#% cos 𝜃#%

𝜕𝑄#
𝜕𝑉#

= −2𝐵##𝑉# +G
%:#

𝑉% 𝐺#% sin 𝜃#% − 𝐵#% cos 𝜃#%

Hypothesis:
1. 𝐵#% 𝑐𝑜𝑠 𝜃#% ≈ 𝐵#%	since the angle differences 𝜃#% are small, i.e. 𝑐𝑜𝑠 𝜃#% ≈ 1
2. 𝐺#% 𝑠𝑖𝑛 𝜃#% ≪ 𝐵#% since the values of 𝐺#% are extremely small
3. 𝑄# ≪ 𝐵##𝑉#)

Polar coordinates



As a consequence:
𝜕𝑃$
𝜕𝜃%

= −𝑉$𝑉%𝐵$&

𝜕𝑃$
𝜕𝜃$

= −𝑉$'𝐵$$
𝑙 ≠ 𝑖 ⟹

𝜕𝑃$
𝜕𝜃%

= −𝑉$𝑉%𝐵$% ∀𝑙

𝜕𝑄$
𝜕𝑉%

= −𝑉$𝐵$%

𝜕𝑄$
𝜕𝑉$

= −𝑉$𝐵$$
𝑙 ≠ 𝑖 ⟹

𝜕𝑄$
𝜕𝑉%

= −𝑉$𝐵$% ∀𝑙

As a consequence, the equation for the LF:

Δ𝑃$
()) =8

%+,

-
𝜕𝑃$

())

𝜕𝜃%
Δ𝜃%

().,)

Δ𝑄$
()) =8

%+,

-
𝜕𝑄$

())

𝜕𝑉%
Δ𝑉%

().,)

⟹

Δ𝑃())

𝑉$
=8

%+,

-

−𝐵$,% 𝑉$
().,)Δ𝜃%

().,)

Δ𝑄())

𝑉$
=8

%+,

-

−𝐵$,% Δ𝑉%
().,)

Jacobian matrices have become (constant) 𝑩 matrices.
Therefore, the NR method does not require any iteration.
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Ward-Hale

Coordinates:
Cartesian

Hypothesis:
[Δ𝑃] and [Δ𝑄] in a generic 
node are depending only 
on the voltage of that node
 

𝜕𝑃#
𝜕𝑉%$

=
𝜕𝑃#
𝜕𝑉%$$

= 0 𝑖 ≠ 𝑙

𝜕𝑄#
𝜕𝑉%$

=
𝜕𝑄#
𝜕𝑉%$$

= 0 𝑖 ≠ 𝑙

Result:
Decoupling between nodes

Carpentier 

Coordinates: 
Polar

Hypothesis: 
𝑃 is only function of 𝜃 and 𝑄 
of 𝑉

𝜕𝑃
𝜕𝑉	 ≈ 0

𝜕𝑄
𝜕𝜃	

≈ 0

Result:
Decoupling of 𝑃 and 𝑄

Stott

Coordinates: 
Polar + Cartesian (mixed)

Hypothesis: 
𝑃 is only function of 𝜃 and 𝑄 
is function of 𝑉

𝜕𝑃
𝜕𝑉	

≈ 0	
𝜕𝑄
𝜕𝜃	

≈ 0

𝐵#% 𝑐𝑜𝑠 𝜃#% ≈ 𝐵#%
𝐺#% 𝑠𝑖𝑛 𝜃#% ≪ 𝐵#%
𝑄# ≪ 𝐵##𝑉#)

Result:
Decoupling of 𝑃 and 𝑄
No iterations
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¡ For high voltage systems, the longitudinal resistances of the line conductors and 
copper losses of transformers are neglected with respect to the series reactance of 
the lines and transformers (note that this is not true in distribution systems).
o Acceptable when the calculation of losses is waived.
o

<
= ≈ 10 for transmission lines,

o
<
= ≈ 50 for transformers 

o In both cases ̅𝑧 ≈ 𝑗𝑥
§ The transverse admittances of the network components are neglected. 

o The shunt capacitances of the lines generate reactive power especially in long 
lines at very high voltage; 

o The currents flowing through the shunt capacitances are mainly associated to 
the reactive power balance of the line and, in high voltage systems, they are 
related to the difference of voltages magnitudes at the extremes of the lines.

o In high voltage systems, however, shunt capacitances have a little influence on 
the active power flows that mainly depend on the differences between the 
phases of the voltage phasors at the line ends. 

o The shunt conductance, which take into account the corona and insulators 
losses of the lines and the iron-losses transformers, may assumed small and, in the 
DC approximation, negligible.

With these simplifications, the grid model is only composed by longitudinal inductive 
reactances (i.e., the equivalent series reactance of lines and transformers).
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The DC Approximation 32
§ E𝑉#	, E𝑉% are the voltages phasors at the extremities
§ 𝜃# is the argument of E𝑉# and 𝜃%	the argument of E𝑉%, 𝜃#% = 𝜃# − 𝜃%
§ 𝑥#% the reactance of the branch 𝑖𝑙
In view of the above, the active power through the branch 𝑖𝑙 is:

𝑃#% =
3𝑉#𝑉%
𝑥#%

sin 𝜃#%

Further hypotheses of the DC approximation are the following:
§ the modules of the nodal voltages all equal to 1	𝑝𝑢
§ the difference 𝜃# − 𝜃% is small, therefore 𝑠𝑖𝑛 𝜃# − 𝜃% ≈ 𝜃# − 𝜃%
Therefore, we have

𝑃#% =
1
𝑥#%
𝜃#%

As a consequence, the injection of power in a generical node 𝑖 is :

𝑃# =G
%:#

𝑃#% =
𝜃#.
𝑥#.

+⋯
𝜃#>
𝑥#>

(note that the voltage angles are known up to one phase shift, so we need to take 
one node, say 𝑘, as reference and set 𝜃? = 0 at this node), so we have that:

𝑃# =
1
𝑥#.

+⋯
1
𝑥#>

𝜃# −G
%5.
%:#

>
1
𝑥#%
𝜃% =G

%5.

>

𝐵#%𝜃%



The following linear matrix equation is obtained for the whole network:

𝑃 = 𝐵 × 𝜃

where [𝐵] and the “susceptance matrix” of the entire transmission network (in pu). 

As seen before, the diagonal terms 𝐵## of [𝐵] consist of the sum of the (longitudinal) 
susceptance of all sides converging at the 𝑖-th node

The terms on the diagonal 𝐵## are positive if the susceptance are inductive while the 
other terms are all negative, provided that the susceptance are inductive, and meet 
condition

𝐵%? = 𝐵?%
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Let consider a generic 3-phase (a,b,c) network with s buses
Ø 𝒩: set of PQ buses
Ø ℋ: set of slack buses

1,2, … , 𝑠 = ℋ ∪𝒩, ℋ ∩𝒩 = ∅

§ Use of compound G𝒀𝒂𝒃𝒄  matrix :
Ø Unbalanced configuration
Ø Coupling between phases
Ø Highly-sparse

§ STEP 1:
§ Nodal equations linking bus voltages to current injections:

Ø 3×𝑠 equations K𝑰𝒂𝒃𝒄 = G𝒀𝒂𝒃𝒄 ⋅ G𝑽𝒂𝒃𝒄

State-dependent computation of voltage sensitivity 
coefficients with respect to power injections.
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Sensitivities w.r.t. power injections Sensitivities w.r.t. OLTC

§ STEP 2:
§ The 𝒊-th element of the equations can be expressed:

̅𝐼! = 2
"∈ℋ∪𝒩

;𝑌!" ;𝑉" 𝑖 ∈ 𝑁

§ STEP 3:
§ Elimination of currents:

Ø Link between PQ injections and bus voltages

Efficient Computation of Voltage Sensitivity Coefficients

Ø Partial derivatives w.r.t. 
     PQ injections

Ø Partial derivatives w.r.t. 
     slack bus voltage

The linearized load-flow model

𝑆 ! = 𝑉! 2
"∈ℋ∪𝒩

;𝑌!" ;𝑉" 𝑖 ∈ 𝑁

𝜕 ;𝑉!
𝜕𝑃'

𝜕 ;𝑉!
𝜕𝑄'

, 𝑙 ∈ 𝒩 𝜕 ;𝑉!
𝜕 ;𝑉$

, 𝑘 ∈ ℋ
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§ STEP 4:
§ Partial derivatives w.r.t. PQ injections

§ Assumptions:

Ø Fixed slack bus voltage

Ø                                                 and  

§ Sparse linear system in rectangular coordinates:

𝟏 #5% =
𝜕𝑉#
𝜕𝑃%

G
7∈ℋ∪𝒩

E𝑌#7 E𝑉7 + 𝑉# G
7∈𝒩

E𝑌#7
𝜕 E𝑉7
𝜕𝑃%

−𝑗𝟏 #5% =
𝜕𝑉#
𝜕𝑄%

G
7∈ℋ∪𝒩

E𝑌#7 E𝑉7 + 𝑉# G
7∈𝒩

E𝑌#7
𝜕 E𝑉7
𝜕𝑄%

𝜕𝑆 !
𝜕𝑃'

=
𝜕
𝜕𝑃'

𝑉! 2
"∈ℋ∪𝒩

;𝑌!" ;𝑉"

Voltage Sensitivities with respect to power injections

The linearized load-flow model

𝑆 ! = 𝑉! 2
"∈ℋ∪𝒩

;𝑌!" ;𝑉"

𝜕 ;𝑉"
𝜕𝑃'

= 0, ∀ 𝑗 ∈ ℋ
=> !
=?D

= = ?!@#A!
=?D

= 𝟏 !BC  => !
=AD

= = ?!@#A!
=AD

= −𝑗𝟏 !BC  
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§ STEP 5:

§ Separate in real and imaginary parts 

§ Solve the linear system for 
- . !0123

-/#
,
- . !4526

-/#
 and 

- . !0123
-0#

,
- . !4526

-0#
 

§ Reconstruct  - . !
-/#

=
- . !0123

-/#
+ j

- . !4526
-/#

 and - . !
-0#

=
- . !0123

-0#
+ j

- . !4526
-0#

§ Sensitivity Coefficients 𝑲𝑷,𝑸:

𝐾/!' =
𝜕 ;𝑉!
𝜕𝑃'

=
1
;𝑉!

𝑅𝑒 𝑉!
𝜕 ;𝑉"
𝜕 𝑃'

𝐾0!' =
𝜕 ;𝑉!
𝜕𝑄'

=
1
;𝑉!

𝑅𝑒 𝑉!
𝜕 ;𝑉"
𝜕 𝑄'

Voltage Sensitivities with respect to power injections
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Theorem:
The system of equations (*), which is linear with respect to rectangular 
coordinates, has a unique solution for every radial electrical network and for 
any operating point where the load-flow Jacobian is invertible.
§ Proof:
The system is linear in rectangular coordinates and has as many equations as 
unknowns. The theorem is equivalent to showing that the homogeneous 
system of equations has only the trivial solution. The homogeneous system can 
be written as:

0 = Δ# G
7∈ℋ∪𝒩

E𝑌#7 E𝑉7 + 𝑉# G
7∈𝒩

E𝑌#7 BΔ7 , ∀𝑖 ∈ 𝒩

Where BΔ# are the unknown complex numbers. We want to show that they are 
equal to zero for all 𝑖 ∈ 𝒩. Let’s  consider two networks with the same topology 
(i.e. same 𝑌EFG  matrix), where the voltages are given. In the first network the 
voltages are:

E𝑉#$ = E𝑉# ∀𝑖 ∈ ℋ
E𝑉#$ = E𝑉# + BΔ# ∀𝑖 ∈ 𝒩

In the second the voltages are:
E𝑉#$$ = E𝑉# ∀𝑖 ∈ ℋ
E𝑉#$$ = E𝑉# − BΔ# ∀𝑖 ∈ 𝒩
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§ Proof (ctd):
Let  𝑆#$  be the conjugate of the absorbed/injected power at the 𝑖-th bus in the 
first network and 𝑆 #$$ in the second. Thus, we have the following equations.
Network 1:

𝑆 #$ = 𝑉 #
$ G
7∈ℋ∪𝒩

E𝑌#7 E𝑉7$ = 𝑉# + Δ# G
7∈ℋ

E𝑌#7 E𝑉7 + G
7∈𝒩

E𝑌#7 E𝑉7 + BΔ7

= 𝑉# G
7∈ℋ∪𝒩

E𝑌#7 E𝑉7 + Δ# G
7∈𝒩

E𝑌#7 BΔ7 + Δ# G
7∈ℋ∪𝒩

E𝑌#7 E𝑉7 + 𝑉# G
7∈𝒩

E𝑌#7 BΔ7

Network 2:
 

𝑆 #$$ = 𝑉 # G
7∈ℋ∪𝒩

E𝑌#7 E𝑉7 + Δ# G
7∈𝒩

E𝑌#7BΔ7 −Δ# G
7∈ℋ∪𝒩

E𝑌#7BV7 −𝑉 # G
7∈𝒩

E𝑌#7 BΔ7

Subtracting the two we get:

𝑆 #$ − 𝑆 #$$ = 2 Δ# G
7∈ℋ∪𝒩

E𝑌#7BV7 + 𝑉 # G
7∈𝒩

E𝑌#7 BΔ7
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§ Proof (ctd):

If we suppose that the load-flow Jacobian matrix is invertible, we can 
apply the inverse function theorem. As a consequence, the nonlinear
system of the power flow equations is locally invertible in a 
neighbourhood around the current operating point. Now, we take  
arbitrarily small, such that 𝑉!4 = 𝑉!44 belong to this neighbourhood 
where there is a one-to-one mapping between the powers and 
voltages. As the powers that correspond to 𝑉!4 = 𝑉!44 are exactly the 
same, it follows that 𝑆 !4 = 𝑆 !44 for every bus 𝑖 ∈ 𝑁. Thus, the two networks 
have the same active and reactive power at all non-slack busses and 
the same voltages at all slack busses. Therefore, it follows that the 
voltage profiles of these networks must be exactly the same, i.e.:

K𝑉! − GΔ! = K𝑉! + GΔ!

GΔ! = 0
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